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J. Phys. A: Math. Gen. 15 (1982) 3009-3023. Printed in Great Britain 

Infinitesimal operators for representations of complex Lie 
groups and Clebsch-Gordan coefficients for compact 
groups 

A U Klimyk 
Institute for Theoretical Physics, Kiev 130, USSR 

Received 11 March 1982 

Abstract. Explicit expressions are obtained for the infinitesimal operators of the degener- 
ate representations of the groups SL(n, C), SO(n, C) and Sp(n, C) in a discrete basis. 
They are used to obtain the infinitesimal operators of unitary representations of the group 
K 0 K in a K basis, where K is one of the groups SU(n), SO(n) ,  Sp(n). The subgroup K 
is diagonally embedded into K 0 K. Matrix elements (generalised Wigner d functions) of 
the degenerate representations of GL(n, C) and U(n) 0 U(n) are evaluated. Clebsch- 
Gordan series are derived for the tensor product of irreducible representations of K which 
are given by one non-zero integer. The infinitesimal operators are applied to obtain 
recurrence relations for the Clebsch-Gordan coefficients of this tensor product. It is 
remarkable that they connect Clebsch-Gordan coefficients corresponding to different 
resulting representations. 

1. Introduction 

Representations of Lie groups have found wide applications in different branches of 
physics (elementary particle theory, atomic physics, nuclear physics, and quantum 
chemistry). Clebsch-Gordan coefficients, infinitesimal operators, and matrix elements 
of the representations are of great importance for physical applications. We need 
different orthonormal bases for different physical problems. 

In this article we derive explicit expressions for the infinitesimal operators of the 
degenerate representations of the groups SL(n, C), SO(n, C) and Sp(n, C) in a K 
basis, where K is a maximal compact subgroup. It is clear that K = SU(n) for SL(n, 
C), K = SO(n) for SO(n, C) and K = Sp(n) for Sp(n, C). The representations under 
consideration are characterised by two numbers. The infinitesimal operators of these 
representations are used to obtain the infinitesimal operators of the finite-dimensional 
irreducible representations of the groups K 0 K. The latter representations have the 
highest weights (MI, 0 , .  . . , O )  (0 , .  . . , 0, M z )  for SU(n) 0 SU(n) and (MI, 0, .  . . , 0 )  
(M2,  0 , .  . . , 0) for SO(n) 0 SO(n) and Sp(n) 0 Sp(n). 

Expressions for the infinitesimal operators derived here are valid for every K basis. 
The formulae contain the Clebsch-Gordan coefficients of the tensor product of simple 
representations of K. The Clebsch-Gordan coefficients can be taken for any K basis. 
The infinitesimal operators correspond to the same basis. 

We derive matrix elements (generalised Wigner d functions) of the degenerate 
representations of the groups GL(n, C) and U(n) 0 U(n) in the U(n) basis. The 
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subgroup U(n) is diagonally embedded into U(n) 0 U(n).  We have obtained four 
different expressions for the matrix elements. They are expressed with the help of 
the hypergeometric functions 2F1. 

The infinitesimal operators of the representations of K 0 K in a K basis are related 
to the Clebsch-Gordan coefficients for K. It leads to the recurrence formulae for the 
Clebsch-Gordan coefficients (Klimyk 1980). These formulae connect the Clebsch- 
Gordan coefficients corresponding to different resulting representations of K. Using 
our infinitesimal operators we obtain recurrence relations for Clebsch-Gordan 
coefficients for the tensor product ( M I ,  0 , .  . . , 0 )  0 ( 0 , .  . . , 0, M z )  of the representa- 
tions of SU(n) and for the tensor product (Ml, 0, . . . , 0 )  0 ( M 2 , .  . . , 0) of the rep- 
resentations of SO(n)  and Sp(n ). These relations are valid for Clebsch-Gordan 
coefficients taken for any K basis. We have obtained Clebsch-Gordan series for these 
tensor products. 

2. Degenerate representations of SL(n, C), SO(n, C) and Sp(n, C) 

We describe some subgroups of the groups SL(n, C), SO(n, Cj and Sp(n, C) which 
will be used to derive the degenerate representations. The Lie algebras of SL(n, C ) ,  
SO(n, C) and Sp(n, C) will be denoted by sl(n, C), so(n, C) and sp(n, C) respectively. 
We shall use the realisations of these algebras given by Jacobson (1961). The 
representations of these groups are described by Gel'fand and Naimark 11950). We 
shall use the realisations of the degenerate representations given by Knapp and Stein 
(1980). 

Let G denote one of the groups SL(n, C), SO(n, Cj, Sp(n, C ) .  Let G = ANK be 
an Iwasawa decomposition of G (Barut and Raczka 1977, Warner 1972), where K is 
a maximal compact subgroup of G,  and A is a commutative subgroup. An important 
subgroup of G is 

(1) 

where A and N are taken from the Iwasawa decomposition of G ,  A1 is a one- 
dimensional subgroup of A,  N1 c N. The subgroup M1 is a maximal connected sub- 
group of G such that m l u l = u l m l ,  mlEM1,  u l ~ A l ,  and M1(K)=M1 l l  K. Let us 
describe these subgroups for SL(n, C), SO(n, C )  and Sp(n, C ) .  

P = ANMi(K) = AiNiMi 

For SL(n, C), A consists of the diagonal matrices 

diag(tl, fz, . . . , t n )  E SL(n,C) t ,  >o.  ( 2 )  

For A1 we have AI  = exp al ,  where a l  is a Lie algebra of A,.  The algebra a l  consists 
of the matrices 

- t  - t  - 2  

n - l ' n - 1  n - 1  
diag(- - , . e . ,  -,f) t E R .  

For SL(n, C )  

M1 = diag(GL(n - 1, C), GL(1, C ) )  

where the matrices have a unit determinant. 
For SO(n, C), A consists of the matrices 

M,(K) = diag(U(n - l), U(1)) 

diag(t1, t 2 , .  . . , fk, I, t; ' ,  t i ' ,  . . . , t i 1 )  ti > o  

(3) 



Infinitesimal operators and Clebsch-Gordan coefficients 3011 

if n = 2k  + 1. If n = 2k, we have to omit 1. For the subgroup AI = exp al  the algebra 
al  consists of the matrices 

h, =diag(O, . . . , 0 ,  t, 0 , .  . . , 0 ,  - t )  t E R .  (6) 

The subgroups MI and M1(K) of SO(n, C) are isomorphic to the groups 

MI - diag(SO(n - 2, C), SO(2, C)) M1(K) -diag(SO(n -2), SO(2)). (7) 

In order to verify it we have to use the realisations of these groups given by Jacobson 
(1961). 

The subgroups A and Al of Sp(n, C) are the same as for SO(n, C), n = 2k. For 
M1 and M1(K) we have 

MI = diag(Sp(n - 2, C), t ,  tC1) 

M1(K) = diag(Sp(n -2),  U,  U-') 

t E C  

U E U(1). 

The subgroup A of G can be represented as A = A1A2, where A2 is a subgroup 
of A. For SL(n, C) A2 consists of the matrices (2) with t, = 1. For SO(n, C) and 
Sp(n, C) A2 consists of the matrices ( 5 )  (without 1 if n = 2k), for which t k  = 1.  

The subgroup M1(K) of G is isomorphic to a direct product of two subgroups 
M2M3, where M3 = U(l)  for SL(n, C) and Sp(n, C), and M3 = SO(2) for SO(n,,C). 
Since SO(2) - U(1), then M3 is the same for all groups G. 

Let us consider the one-dimensional representation 

hlhznm2m3 + exp[A (log hdlw(m3)  (10) 
hlEA1 h 2 ~ A 2  n E N  m 2 e M 2  m3€M3 

of the subgroup (1) of G, where A is a complex linear form on the Lie algebra al  of 
the group AI,  and w is a one-dimensional representation of M3-U( l ) .  It is clear 
that A is characterised by a complex number and w by an integer. 

The representation (10) of P induces the representation of G. We denote it by 
rAW. It can be realised in the Hilbert space LZ(K), which consists of all functions of 
L2(K) satisfying the condition 

f h k )  = w(m3)f(k) m = m2m3 E M2M3. (1 1) 

The operators (g) ,  g E G, act upon Li(K) as 

mTh,(g)f(k) = exp[A (log hl)lf(k,) 

where hlEA1 and k , E K  are defined by the Iwasawa decomposition of kg: kg= 
hlh2nk,, h2 E A2, n E N. The representations rAW constitute the degenerate series. 

3. Preliminaries 

Let Ce be a Lie algebra of G. Let Ce = Yt+B be a Cartan decomposition of 3, where 
Yt is a Lie algebra of K (Helgason 1962). The subalgebra al  is contained in B. Let 
9, be a complexification of 9. Let us consider the pair (9, al). The system of 
restricted roots is defined for it (Warner 1972). Since al is one dimensional, there is 
one simple restricted root a. Let B(., a )  be a Cartan-Killing form on Ce and 6 a Cartan 
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involution (Helgason 1962). Then 

( x ,  Y )  = - W X ,  B y )  & Y E 9  c > o  112) 

is a scalar product on 9 (Helgason 1962). The adjoint representation of G in 3 (i.e. 
the representation g + g - l x g ,  x E 3) will be denoted by Ad. 

The infinitesimal operators of the representations rAU will be investigated by means 
of the following lemma (cf Klimyk 1979, lemma 5.2). 

Lemma. The infinitesimal operators rAW( Y), Y E Pc, act upon the infinitely differenti- 
able functions of Li (K)  as 

r ~ , ( Y ) f ( k ) = ( ( A d  k)Y,H)A(H)f(k)-((Ad k )Y,~) f (k )+$Q,  ((Adk)Y,  h)lf(k)  (13) 
where H is an element of a l  for which (H,  H )  = 1, h is an element of a l  such that 
a ( h )  = 1, Q is identical to the operator Q1 of formula ( 5 )  of Klimyk and Gruber 
(1979), p is half of the sum of the positive restricted roots of the pair (3, al)  represented 
as an element of a l  and [ e ,  a ]  denotes a commutator of Q with the multiplication 
operator. 

We need an orthonormal basis of Li(K). The functions of Lt (K)  satisfy the 
condition (1 1). Therefore, the matrix elements of the irreducible representations of 
K, for which the relation (1 1) is valid, can be taken as a basis of Li(K). The relation 
(11) implies the left invariance with respect to the subgroup Mz. Hence, condition 
(11) can be satisfied by the matrix elements of the representations of K = SO(n)  and 
Sp(n) with the highest weights (ml ,  m2,  0, . . . , 0) ,  m l  2 m2 3 0, and of the representa- 
tions of K = SU(n) with the highest weights (ml ,  0, . . . , 0 ,  m2),  m l  3 0  2 m 2 .  These 
representations of K will be denoted by [ m l m ~ ] = D ~ " ~ .  The condition (11) means 
also that 

f(m3k) = w h ) f ( k )  m3 E M3. (14) 

It implies restrictions for the integers m l  and m 2 .  It is clear that the representation 
w of U ( l )  is of the form eid -P eiqd, where 4 is an integer. 

For SU(n) condition (14) means that ml + m2 = 4. This follows from the formula 
for the operators Ekk in the representations of U(n) (Gel'fand and Zetlin 1950). 

For Sp(n) condition (14) means that m l  + mz 3 141 and ( -  l),l+,, = ( -  l)', i.e. 
m l  + m2 and 4 are of the same parity. Moreover, the representation [mlmz]  of Sp(n) 
contains the representation [ O ]  0 w of Sp(n -2) 0 U(l )  with the unit multiplicity. Here 
[ O ]  denotes the representation of Sp(n -2) with the highest weight ( 0 , .  . . , 0). These 
statements follow from the reduction Sp(n) 2 Sp(n - 2) 0 U(1) for representations of 
Sp(n) (Zhelobenko 1970). 

Lemma. Let [ m ]  be the representation eid + eimd of S0(2) ,  and [ O ]  the representation 
of SO(n -2) with the highest weight (0, . . . , 0).  Multiplicities of the representations 
[O] 0 [ m ]  of SO(n -2) 0 SO(2) in the representation [mlm2] of SO(n)  do not exceed 
1. Moreover, a set of the representations [ O ]  0 [m] of SO(n -2) 0 S 0 ( 2 ) ,  which are 
contained in [mlmz], coincides with [O] 0 [ml  - m2 - i ] ,  i = 0,2 ,4 ,  . . . , 2(ml - mz) .  

This lemma is proved by means of a decomposition of the character of the 
representation [mlmz] into the irreducible characters of SO(n -2) 0 SO(2) and using 
the results obtained for the representations of SO(n)  by Kachurik and Klimyk (1982). 
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It follows from this lemma that for SO(n) condition (14) means that m l + m 2 2 ) 4 1  
and the integers m l  + m2 and 4 are of the same parity. 

It is known that the multiplicity of the representation [ m l m 2 ]  of K in rA, is equal 
to the multiplicity of the representation [O] 0 w of M1(K) in [mlm2] (Gel'fand and 
Naimark 1950). Therefore, multiplicities of the representations of K in rAu do not 
exceed 1. Moreover, restriction of the representation T,,, of SL(n, C) onto K = SU(n) 
contains the representations [mlm2] of SU(n) for which ml + m2 = 4. A restriction of 
the representation rA, of SO(n, C) or Sp(n, C) onto K contains the representations 

Let I":"') be a normalised vector of the carrier space of the representation [mlm2] 
of K which transforms according to the representation [O] 0 w of M1(K). Let Im1T2), 
r = 1 , 2 , .  . . , dim [mlm2], be any orthonormal basis of the space of the representation 
[mlm2]. The functions 

[mlmz]of Kforwhich m l + m 2 2 1 4 (  and (-l)"l+"'= ( -  l)q. 

(dim [mlm2])1'2("1,"2~D"1m2(k)~"1~2) Imlm2, r )  k c K  (15) 

for all r and for all [mlm2], admitted by rA,, constitute an orthonormal basis of L:(K). 
We shall find the infinitesimal operators wA,( Y ) ,  Y E  8, in the basis Imlm2, r). The 

derivation is similar to the one given by Klimyk and Gruber (1979) for the representa- 
tions of the group U@, 4). Therefore, we omit details here. 

The scalar product (12) can be given on B as 

(x, y )  = b Tr xjjT (16) 

where b = 1 for SL(n, C ) ,  and b =3 for SO(n, C) and Sp(n, C). In (16) T denotes a 
transposition. 

Let G = SL(n, C ) .  According to (16) for the matrices H and h of (13) we have 

where eii is a matrix for which (eii)st = SisSj,. The simple restricted root of the pair 
(sl(n, C), al)  is defined by the relation a ( h )  = ( n  - 1)n-'a The formula a(h ' )  = (ha, h') ,  
h' E al, defines the correspondence between a and the element ha E al.  It is clear that 
ha = (n - l)-lnh. 

For SO(n,C) and Sp(n, C) the root a is defined by the relation a ( h t )  = t where h, 
is given by (6). Therefore, we have for these groups that H = h = ha, and this element 
is equal to the matrix (6) at t = 1. 

Now for the summands of the relation (13) we have 

where p is the multiplicity of the root a, and s the multiplicity of the root 2a. For 
SL(n, C) p = 2(n - l), s = 0. For SO(n, C) p = 2(n -2),  s = 0. For Sp(n, C) p = 
2(n -2), s = 2. 

Now we consider the operator Q of (13). It is constructed by means of the subgroup 
chains (2) and (3) of Klimyk and Gruber (1979). Since we consider the degenerate 
representations of G then the chain (2) consists of two subgroups K = K1 3 K2 = M1(K). 
For SL(n, C) and SO(n, C) chain (3) of Klimyk and Gruber (1979) coincides with 
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chain (2). For Sp(n, C) the chain (3) of Klimyk and Gruber (1979) reduces to 

Sp(n) = K ~ S p ( n  -2) 0 Sp(2) 3Ml(K)  = Sp(n -2) 0 U(1). (20) 

The operator Q acts upon the states (15) as 

Qlmlm2, r )  = q(mlm2)/mlm2, r )  

where q(mlm2) is a number. 
From (18), (19), (21) and (13) we obtain 

( Y)lmlm2, r )  = [A (ha 1 - i ( p  + 2s)(ha, ha) + f ( Q  - 4 (mlmd)I((Ad k) Y, h)lml m2,r). 
(22) 

This relation will be considered for a basis of .9 consisting of orthonormal elements 
Y = Y1,  Y2, . . . , Yq, q = dim 9, with respect to the scalar product (12). Since [X ,  .9] c 
9, then 9 is a carrier space of the representation Ad of K and X .  This representation 
has the highest weight (1 ,0 , .  . . , 0 ,  - 1) for SU(n), (1, 1,0,. . . , 0) for SO(n) ,  and 
(2,0,. . . , 0 )  for Sp(n). For SU(n) and SO(n)  the elements Y1,  Y2 , .  . . , Yq can be 
taken to correspond to the Gel'fand-Zetlin patterns for the representation Ad. For 
Sp(n) they can correspond to the patterns of Zhelobenko (1970), which are similar 
to the Gel'fand-Zetlin patterns. 

The functions ((Ad k )Y , ,  h )  are matrix elements of the representation Ad of K. 
Since Imlm2, r )  are also matrix elements of the representations of K (cf formula (15)), 
then 

((Ad k)Yj, h )  Im1m2, r )  

where (. , . I . ,  ,) are the Clebsch-Gordan coefficients for K, and y separates multiple 
representations in the tensor product [mlm2] 0 Ad. Let us note that the element h 
of (23) has the unit norm for SO(n, C) and Sp(n, C )  and the norm [ ( n  - l) /n] ' /* for 
SL(n, C). 

The linear form A on al  is characterised by the complex number (+ = A (ha ) .  Let q 
be an integer which defines the representation w of M3:  ei4 + eiq4 . Then the representa- 
tion rAW will be denoted by rUq. 

4. Infinitesimal operators of nu" for SL(n, C )  

The summation in (23) is over all vectors im;m;, r ' )  for which the Clebsch-Gordan 
coefficients are not equal to zero. Let us consider the tensor product of the representa- 
tions of SU(n) with the highest weights (ml,  0 , .  . . , 0, m2) and (1,0, .  . . , 0 ,  -1). It 
contains the representations of SU(n) with the highest weights (ml, 0, . . . , 0 ,  m2) (with 
the multiplicity 2), ( m l  + 1,0,  . . . , 0 ,  m2 - l), (ml  - 1, 0, . . . , 0 ,  m2+ 1). Other highest 
weights contain three or four non-zero coordinates, or do not satisfy the condition 
mi + mh = q ;  we are not interested in them. Therefore, the summation in (23) is over 

(m;, m ; )  = (ml, m2), (mi + 1, m2- I ) ,  (ml- 1, m2+ 1). (24) 
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We have to substitute (23)  into (22)  and to find eigenvalues of the operator 
'Q -4(m1m2). These eigenvalues are evaluated in the same way as in the case of the 
group U @ ,  4 )  (Klimyk and Gruber 1979). We have 

$(Q -q(mlmd)lml+ 1 ,  mz- 1 ,  r )  = (ml - m z + n ) l m l +  1 ,  m2- 1 ,  r )  
~(Q-~(mlm2))~ml-1,m2+1,r)=(mz-ml-n+2)~ml-1,mz+1,r) 

- q ( m l m d ) l m ~ ,  mz, r )  = 0. 

Therefore, for SL(n, C), we obtain that 

r"'(Y,)lml, m2, r ) = C  ( a + m l - m z ) K ( m l + l ,  m z - l ,  r' ,  j ) / m l + I ,  m 2 - 1 ,  r') 
1' 

+C ( a - m l +  m2-2n + 2 ) ~ ( m l -  I ,  mz+ I ,  r', j ) lml-  I ,  m2+  I ,  r ')  
1' 

The summation in (25)  is over all r' which are admitted by the Clebsch-Gordan 
coefficients. In (26)  there are two summands if (mi ,  m i )  = (ml ,  m2), and one summand 
if (mi, mh)  f (ml, m2). 

Thus, we have the infinitesimal operators r " ' (y I )  of the representations r"' of 
SL(n, C) in SU(n)  bases. They allow us to separate irreducible representations in the 
set of all representations r"' and to obtain a structure of reducible representations 
r"'. It can be done exactly in the same way as for the groups U ( n ,  1 )  and SOo (n,  1) 
(Klimyk 1979). Therefore, we formulate the theorem without proof. 

Theorem. The representation 7"' is irreducible if and only if U is not an integer such 
that ( -  1)' = ( -  l)", or - 141 < U  < 2n + 141. If cr s -141 and cr is an integer such that 
( -  1)' = (-  l)", then r"' contains two (and only two) irreducible representations of 
SL(n,C).  One of them is finite dimensional. It will be denoted by F"'. A restriction 
of F"' onto SU(n) contains (with the unit multiplicity) all representations [mlmz] of 
SU(n) for which m l  + m2 = q and ml  - m2 s -a, and only them. 

Let us note that the vanishing of the multiplier (a + m l  - m2) of the first summand 
of the right-hand side of (25)  leads to a separation of the finite-dimensional subrep- 
resentation F"' in r"'. It is clear that the infinitesimal operators of F"' are given by 

It can be seen that F"' is a real analytic representation of SL(n, C ) .  Therefore, 
this representation is the tensor product of complex analytic and complex anti-analytic 
representations of SL(n, C )  (Zhelobenko 1970, ch 6 ) .  Thus, the representation F"' 
is given by the two highest weights ((-a +4) /2 ,0 , .  . . , O)((  -a -4 ) /2 ,0 , .  . . , 0). An 
explicit expression for these highest weights is defined by theorem 5 . 1 3 ~  of Klimyk 
(1979).  

The representations r"' are unitary if cr - n is imaginary. These representations 
constitute the principal degenerate series of SL(n,C).  

(25) .  
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5. Infinitesimal operators of wuq for SO(n, C) 

In  this case the considerations are the same as for SL(n, C). Decomposing the tensor 
product of the representations of SO(n) with the highest weights (ml,  m2, 0 , .  . . , 0) 
and (1, 1, 0, . . . , 0) into irreducible representations, we find that the summation in 
(23) is over 

( m i , m ; ) = ( m l + l ,  m2+1), ( m l + l ,  m2-1), 

(ml-l,m;?+l),(ml-l,m2-l),(ml,m2). 127) 

This tensor product contains the representation [mlm2] with multiplicity 2 and other 
representations with multiplicity 1. Evaluating eigenvalues of the operator Q - 
q(mlm2), we find from (22) and (23) that 

~r"~(Y,) lml ,  m2, r )  

= C (a+ml +m2)K(ml + 1, m2+ 1, r ' ,  j ) lml+ 1, m 2 t  1, r ' )  
r '  

+I (a+ ml -m2-n +4)K(m1 + 1, m2- 1, r ' ,  j)lml + 1, m2-  1, r ' )  

+I ( a - m l  Sm2-n +2)K(ml  - 1, m2+ 1, r',j)lml - 1, m 2 +  1,  r ' j  

+E (a -m1-m2-2n +6)K(m1- 1, m2- 1, r',j)lml- 1, m2- 1, r ' )  

r '  

r '  

r '  

where 
112 

K(mi ,  mi,  r ' ,  j )  = ( iim[m1m21) 
im[mimi] 

In (29) there are two summands if (mim;)  = (mlm2), and one summand if (",mi) f 
( ~ 1 1 7 1 2 ) .  

Theorem. The representation 7ruq of SO(n, C) is irreducible if and only if cr is not an 
integer such that ( - l ) '=( - l )q ,  or - /q (<a<2n-4+lq l .  If as-Iql and (-1)"= 
( -  l)q, then rUq contains two (and only two) irreducibie representations of SO(n, C). 
One of them is finite dimensional. It will be denoted by Fuq. A restriction of F"' 
onto SO(n) contains (with the unit multiplicity) all representations [mlm2] of SO(n) 
for which ml - m2 t 141 and ml + m2 c -a and only them. 

The vanishing of the multiplier (a + ml + m2) of the first summand of the right-hand 
side of (28) is a reason for the separation of the finite-dimensional subrepresentation 
Fuq in rUq. It is clear that the infinitesimal operators of Fuq are given by (28). The 
representation Fuq is given by the two highest weights (( -a  + 9)/2,0,  . . . , 0 )  

The representations rUq, for which a - n + 2 are imaginary, constitute the principal 
( ( -a -q) /2 ,  0 , .  . . , O ) .  

degenerate unitary series of SO(n, C). 
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6. Infinitesimal operators of a"' for Sp(n, C) 

Decomposing the tensor product of the representations of Sp(n) with the highest 
weights (ml ,  mz, 0,. . . ,0) and (2,0,. . . ,0 )  into irreducible representations, we find 
that for Sp(n, C )  the summation in (23) is over 

(mi ,  m i )  = (ml+2, md,  (ml,  m2+2), (m1-2,mA (ml, m2-2), (m+ 1, m ~ +  11, 

(ml+1,mz-1),(ml-1,m2+1),(ml-1,m2-1),(ml,m~). 
The decomposition contains [ml mz] with multiplicity 2 and other representations 
with multiplicity 1. Evaluating eigenvalues of the operator Q -q(mlm2), we find from 
(22) and (23) that 

r u 4 ( ~ ) l m l ,  1122, r )  

=I (a+ml+m2)K(ml+2, m2, rf,j)/m1+2, m2, r') 
r' 

The summation in (30) is over all r' which are admitted by Clebsch-Gordan coefficients. 
In (31) there are two summands if (mi ,  m i ) =  (ml ,  m2), and one summand if 
(mi ,  m i )  # (ml, mz). 

Theorem. The representation rr"" of Sp(n, C) is irreducible if and only if a is not an 
integer such that ( -  1)" = ( -  l)", or -141 <a<2n + ) q ) .  If CT s -141 and ( -  1)" = (-  l)', 
then 7rUq contains two (and only two) irreducible representations of Sp(n, C).  One 
of them is finite dimensional (we denote it by Fw). A restriction of Fw onto Sp(n) 
contains (with unit multiplicity) all representations [ m l m ~ ]  of Sp(n) for which ml - 
m2 2 141 and ml + m2 s -U, and only them. 
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The representation Fuq is given by the two highest weights ( ( - U  + q ) / 2 , 0 ,  . . . , 0) 

The representations vu‘, for which U - n are imaginary, constitute the principal 
(( - a - q ) / 2 , 0 , .  . . , 0). Its infinitesimal operators are given by the formula (30). 

degenerate unitary series of Sp(n, C).  

7. Infinitesimal operators of unitary representations of K 0 K in a K basis 
(diagonal embedding) 

As above, let G denote one of the groups SL(n, C), SO(n, C), Sp(n, C), and let K be 
its maximal compact subgroup. We consider the finite-dimensional subrepresentations 
Fuq of the representations vu‘ of G. 

Let 9 = X + B be a Cartan decomposition of the Lie algebra 9 of G. The compact 
Lie algebra XCDX corresponds to the algebra 9 (Helgason 1962). It has the decompo- 
sition 

- 
X@X = X + iB i =  J- I .  (32) 

It is clear that XCDX is a Lie algebra of the group K 0 K. By means of an analytic 
continuation of appropriate parameters, we obtain the finite-dimensional representa- 
tion Fuq of K 0 K from the representation Fuq of G. Multiplying the infinitesimal 
operators Y E P  of the representations Fuq of G by i, we obtain the infinitesimal 
operators .Ii = i U, of the representations Fuq of K 0 K. In the basis Iml, m2,  r )  they 
are given by formulae (25) ,  (28) and (30). Their matrices do not satisfy the unitarity 
condition .IT = -.Ij. To satisfy this condition we have to use the new basis 

Iml, m2, r)’  = [ a ( m l ,  m2)I-1’21m1, m2, r ) .  (33) 

For SL(n, C )  the numbers a ( m l ,  m2)  are defined by 

1 - 1  - a + 2 n  + m l  - m2+2j 
, = o  u + m l - m 2 + 2 j  a ( m l + i ,  m 2 - i ) =  a h ,  m2). (34) 

For SO(n, C )  

( 3 5 )  
-u+2n+ml+m2+2j -6  

U + m l  + m2 +2j-2  a (ml+i ,m2+i )=  n a h ,  m2) 
i = l  

I - u + n  + m 1 - m 2 + 2 j - 2  
a (ml+i ,  m2- i )= n a ( m l ,  m2). 

, = I  a - n + m 1 - m 2 + 2 j + 2  

For Sp(n, C )  the numbers a ( m l ,  m2) depend only on the sum m l + m ~ :  n(m1, m2) = 
a ( m l  + m2).  They are defined by 

I fwegivea(ml ,  m 2 ) f o r f i x e d m l = m ? , m 2 = m ~ , w e o b t a i n a ( m l ,  m2)foral lml ,  m2 
(Klimyk 1979, ch 5). 

The representation Fuq of SL(n, C) leads to the irreducible representation of 
SU(n) 0 SU(n) with the highest weight (MI, 0, . . . , O)(O, . . . , 0, Mz), MI = ( - U  + 9 ) / 2 ,  
M2 = (U + q ) / 2 .  From (25), (33), (34) we obtain the infinitesimal operators of this 
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representation of SU(n) 0 SU(n) in the basis (33) 

Jjlml,  mz, r > =  -c [(M1-Mz-ml+mz)(M1-MZ+ml-mz+2n)]1~2 
I ‘  

x K ( m l  + 1, mz- 1, r’,j)Iml+ 1, mz- 1, r‘) +E [(MI -Mz-ml +mz+2) 

x (Ml -Mz+ml  -mz+2n -2)]‘’’K(m1 - 1, mz+ 1, r’, j )  

X l m l - l , m z + l , r ’ )  

I ‘  

where K ( .  . .) are defined by (26). 
The representation Fa‘ of SO(n, C) leads to the irreducible representation of 

SO(n) 0 SO(n) with the highest weight (M1, 0 , .  . . , O)(Mz, 0 , .  . . , 01, MI = 
(-v +4)/2,  Mz = (-(T -q)/2. From (28), (33), (35) and (36) we obtain the infinitesimal 
operators of this representation of SO(n) 0 SO(n) in the basis (33). They can be 
obtained from (28) if we replace rV4( Y , )  by Jj and 

((T + m l  - m2 -n +4)  by -[(MI +M2 - ml + mz+ n -4)(M1 +Mz + mt-  mz + n)]l” 

(a - m l  + m2 -n +2)  by [(MI +Mz+ m l  - m2 + n -2) 

x (M1 +M2- ml + m2+ n -2)]’/’ 

(v - ml - m2-2n +6)  

( a - n + 2 )  by -i(Ml+Mz+n-2). 

The representation Fuq of Sp(n, C) leads to the irreducible representation of 
Sp(n) 0 Sp(n) with the highest weight (M1, 0, . . . , O)(MZ, 0, . . . , 0), M1 = 
(-(T +4)/2, MZ = (-(T -q)/2. From (30), (33) and (37) we obtain the infinitesimal 
operators of this representation of Sp(n)OSp(n)  in this basis (33). They can be 
obtained from (30), if we replace ruq( yi) by Jj and 

(a + mt + m2) 
(c - m 1 - m2 - 2n + 2) 

( c - n )  by -i(Ml+MZ+n). 

It is shown by direct computation that the infinitesimal operators Ji in the basis 
(33) satisfy the unitarity condition JT = -JP 

We have obtained the infinitesimal operators of the representations Fuq of K 0 K 
in a K basis. Let us consider the embedding of the Lie algebra X of K into the Lie 
algebra X 0 X. Let I,, s = 1 ,  2 , .  . . , &m X, be basis elements of the subalgebra X 
from (B = X+ 8. Then Y, = iI,, i = J- 1, is a basis of 8. Independent operators 
correspond to the elements I, and Y, in the representations rTTO4 and Fuq. Therefore, 
we consider that the elements I, and Y, of 93 are linearly independent. The decomposi- 
tion (32) of X 0 X corresponds to the decomposition 93 = X+ 8 of 9. In this reason 
for the decomposition (32) we have the elements J, = iY, instead of Y,. The elements 
J, constitute a basis of i8 .  We consider that the elements I, and J, of X 0 X are also 
independent. Two subalgebras X of the left-hand side of (32) have the following bases: 

by [(MI +Mz- ml - m2 + 2)(M1 +M2+ ml + m2+2n -6)]’/’ 

by -[(MI +Mz- ml- mz)(Mt +M2 + ml+ m2+ 2n)]’/* 

by [(MI + M2 - ml - mz + 2)(M1+ M2 + ml + mz + 2n - 2)]’/’ 

{XS =%Is +J,H {x: = $(Is - J,)}.  (39) 
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It is easy to verify that [X,, X : ]  = 0 for all s and r. The diagonal element X, + X i  = I, 
of the subalgebra X from the right-hand side of (32) corresponds to the diagonal 
element X,CDX: of XCDX. The element X,  -XL =J, corresponds to the element 
X , O ( - X : )  of i P c X @ X .  

8. Matrix elements of the representations of GL(n, C) and U(n) 0 U(n) in the 
U(n ) basis 

It will be more convenient to consider the groups GL(n, C) and U(n) 0 U(n) instead 
of SL(n, C) and SU(n) 0 SU(n). The decomposition GL(n, C) = SL(n, C) 0 CO is 
valid, where CO is the multiplicative group of complex numbers without 0. Let us 
consider the subgroup 

P = A'NM;(K) = A;NIM; 

of GL(n, C) where N and N1 are the same as in ( l ) ,  A' consists of the matrices 
diag(rl,. . . , tn) ,  t, > O ,  Ai  consists of the matrices diag(1, 1 , .  . . , 1, t ) ,  t >0, and 

Mi(K) = diag(U(n - l ) ,  U(1)) = M;M; M i  = U(1). 

For the group A' we have the decomposition A' = A'IA;, where A; consists of the 
matrices diag(tl, . . . , tflPl, 1). 

Let w be the representation e" +e'" of U(1). Let Li(K), K = U(n), be a subspace 
of L2(K) consisting of the functions f for which 

f W )  = w ( m 3 ) f ( k )  m = m2m3 E MhM;. (40) 

If A is a complex linear form on the Lie algebra a; of A; and = A(e), e = 
diag(0, . . , 0, 1) E a;, then we define the representation rcq of GL(n, C) which acts 
upon Li (K)  by the formula 

r u q ( g ) f ( k )  = exp[A (log hdlf(k,). 

Here hl E A; and k, E K = U(n) are defined by the decomposition kg = hlhznk,, h2 E 

Ah, n E N. The representation ruq of GL(n, C) is decomposed into the product of the 
representation ruq of SL(n, C), defined in § 2, and a one-dimensional representation 
of Co. 

The quotient space U(n - l ) \U(n)  can be parametrised by the angles 
41, .  . , ,&, 62 , .  . . ,efl (Klimyk and Gavrilik 1979). Due to (40) functions of Lt (K)  
can be considered as functions of these angles. 

Every element gEGL(n,C) can be represented as a product of the matrices 
a, = diag(1, . . . , 1, t ) ,  t > 0, and elements of U(n). The representation matrix elements 
for U(n) are known for the Gel'fand-Zetlin basis. Therefore, we have to find the 
matrix elements corresponding to the matrices a,. We obtain that 

ruq(a,)f(&,  . . . , &, e2, . . . , e,) = p'f(dl, . . . , 4fl, e?, . . . , e, e l )  
where 

112 1 - t 2  -- 1 
p = t  1 + sin2@,) sin 0; = p sin e,,. i 7  
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A restriction of ruq onto U ( n )  consists of all representations of U ( n )  with the 
highest weights ( m l ,  0, . . . , 0, m2) for which ml+ m2 = 4. Multiplicities are equal to 
1. Therefore, for the matrix elements of the operators ruq(a,)  we have 

dZlmz)(mim;)(n,n,) ( t )  

(41) U (mi0 ... Om')  x cc d(o.. . O ) ( n l O t .  . onz) (8') 

where 

A = ( n  - l)(dim[m1m2]/dim[m~mh])"~ 

and * denotes a complex conjugation. Here d: : : (8 )  are representation matrix elements 
for U ( n ) ,  defined by formulae (48) and (49) of Klimyk and Gavrilik (1979). They can 
be represented as 

d(o.. . O)(n10 .  . . onz)  (8 )  
(m,O.. .Om,) 

The expressions for N and M are given by Klimyk and Gavrilik (1979). 

Ryzhik (1965), we obtain four expressions for the matrix elements (41) 
Substituting (42) and (43) into (41) and using formula 3.681(1) of Gradshtein and 

d?lmz)(m imi>(n lnz )  ( t )  
m. m! 

m. n.. 

t 
xB(b' ,&F1( U - 4  +2k' , b ' ; b ' + d ; T  

(44) 
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where 

r = k + k ' -n l  -n2+n - 1 

b = -k + k ' + n  -1 

s = n l + n 2 +  1 

b '=  nl  + n 2 -  k - k ' +  n - 1 

r ' =  k - k ' + n  - 1 

d = -nl  -nz+ 1. 

An analytic continuation t + eim in the matrices at gives the matrices U (e'") of the 
group U ( n ) O U ( n ) .  We wish to find matrix elements of the unitary irreducible 
representations DMIM2 of U(n)  0 U(n) with the highest weights (MI, 0 , .  . . , 0) 
(0, . . . , 0, M2), MI 3 0 2 M2. These representations can be obtained from the finite- 
dimensional representations of GL(n, C )  which are subrepresentations of the rep- 
resentations rUq of GL(n, C) with U = M2-M1, q = M1 + M 7  (cf § 4). A restriction 
of the representation DMIM2 onto U(n)  (diagonal embedding into U(n)  0 U(n))  
contains with the unit multiplicity the representations (ml ,  0 , .  . . , 0, m2) of U(n)  for 
which ml + m2 = MI +M2, m l  - m2 s MI - M2. To obtain the matrix elements of DMlM2 
from formulae (44), we have to do an analytic continuation t + e'" and then replace 
the basis Iml, m2, r )  by the basis (33). As a result we obtain for them the formula 

where 

2ml-2M1-2s 2n +2m;-2M2-2s Q=i E1 2n+2ml-2Mz-2s  s = ~  h 2mi-2M1-2s 

and d :  : : (e'") are given by (44). 

9. Recurrence relations for Clebsch-Gordan coefficients 

The subalgebra X of the right-hand side of (32) is diagonally embedded into YCCBX. 
Therefore, a restriction of the irreducible finite-dimensional representation of X@X 
with the highest weight (ml ,  m,, , , . , mk)(m;,  m;, . . . , m i )  onto this diagonal 
subalgebra YC leads to the tensor product of the irreducible representations of 7C 
with the highest weights ( m l , m 2 , .  , . , m k )  and (mi ,  m i , .  . .,mL). We know all 
irreducible representations of 7C which are contained in the representations Fuq 
of X @ Y C  (cf §§4,5,6). Therefore, we know the Clebsch-Gordan series for the 
tensor product of the representations of SU(n)  with the highest weights 
(M1,O,. . . , O ) ,  (0 , .  . . , O , M ~ ) , M I ~ O ~ M M ~  

miniM1,-Mzi  

(M1,O,. . . ,O)O(O,. . . , 0 , M 2 ) =  1 (Ml-i ,O, .  . . ,O,M2+i)  (45) 
1 = o  

and for the tensor product of the representations of SO(n)  and Sp(n) with the highest 
weights (MI ,  0 , .  . . , 0 )  and (M2, 0 , .  . . , O), MI a M 2 z O  

(MI, 0, . . . , 0) 0 (M2, 0, . . . , 0) = 1 (46) 

Multiplicities of representations in the decompositions (45) and (46) are equal to unity. 
Now we can derive recurrence relations for Clebsch-Gordan coefficients of the 

decompositions (45) and (46). For this purpose we use the formula (8) of Klimyk 
(1980). As above, K is one of the groups SU(n),  SO(n) ,  Sp(n). Let be an 
orthonormal basis of the carrier space for the representation of K with the highest 
weight (MI ,  0, , , . , 0), and 1:;) for the representation of SU(n) with the highest weight 

MZ M2-r 

r-0 , = o  
(MI + M2 - i - 2j, i, 0, . . . , 0). 
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(0 , .  , . , 0 ,  M2) or of SO(n) and Sp(n) with the highest weight (M2,0,. . . ,O). Let 
~"',!'") be the basis elements which in 0 7 were denoted by Iml, m2, r )  (cf formula 
(33)). The choice of these orthonormal bases is not restricted by any conditions. 
The following recurrence relations for the Clebsch-Gordan coefficients of the 
decompositions (45) and (46) follow from formula (8) of Klimyk (1980) 

where Xi and X i  are the basis elements from (39). The left-hand side of (47) contains 
the matrix elements of the infinitesimal operators Ji obtained in 8 7. The right-hand 
side of (47) contains the matrix elements of the infinitesimal operators of the irreducible 
representations of K. The summation on the left-hand side is the same as in the 
formulae for the infinitesimal operators .Ii in P 7. 

Formulae (47) define all the Clebsch-Gordan coefficients of the decompositions 
(45) and (46) up to one constant (Klimyk 1980). They relate the Clebsch-Gordan 
coefficients corresponding to different resulting representations. 

10. Conclusions 

We have obtained infinitesimal operators of the representations vuq and F"' of the 
complex simple Lie groups G and of the irreducible representations Fuq of the compact 
Lie groups K 0 K in a K basis. The expressions for infinitesimal operators include 
simple Clebsch-Gordan coefficients for the group K. These Clebsch-Gordan 
coefficients can be taken for different orthogonal bases. Therefore, we obtain 
infinitesimal operators in different K bases. Correspondingly, we have the recurrence 
relations for Clebsch-Gordan coefficients of the decompositions (45) and (46) in 
different bases. The Clebsch-Gordan coefficients which are contained in the 
expressions for infinitesimal operators will be found for the most interesting bases in 
one of the forthcoming papers. 
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